Monte Carlo Computations

of Neoclassical Transport

W. LOoTZ AND J. NUHRENBERG

IPP 0/49 December 1987

IR

MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK
8046 GARCHING BEI MUNCHEN




MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Monte Carlo Computations

of Neoclassical Transport

W. LOTZ AND J. NUHRENBERG

IPP 0/49 December 1987

Die nachstehende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die
Zusammenarbeit anf dem Gebiete der Plasmaphysik durchgefiibrt.




IPP 0/49 December 1987

Monte Carlo Computations

of Neoclassical Transport

W. LOTZ AND J. NUHRENBERG

Abstract

Neoclassical transport coefficients and confinement times in stellarators of general
geometry and tokamaks with and without ripple are computed by Monte Carlo simu-
lation over wide ranges of mean free paths, ratios of plasma to gyro radius, and radial
electric fields.

The results for monoenergetic particles can be represented by simple formulas using
a transport coefficient normalized to the tokamak plateau value and a mean free path
normalized to half the connection length.

Transport coefficients obtained with monoenergetic particles subjected to pitch
angle scattering and energy relaxation are convoluted with a Maxwellian energy dis-
tribution. The results are compared with theory and with simulations using a particle
distribution subjected to pitch angle as well as energy scattering. The overall agreement
is good.

Transport coefficients with Maxwellian energy distributions for £ = 2 stellarators
and for various other stellarator configurations are shown. Particle transport as well as
energy transport coefficients for these configurations are computed for ions (deuterons)
as well as for electrons. Estimates of particle and energy confinement times are also
obtained.




I. INTRODUCTION

Monte Carlo methods previously developed! =7 for calculating neoclassical transport
coefficients and confinement times in stellarators and tokamaks with or without ripple
can be used not only for monoenergetic particles, but also for particles which have an
energy distribution.

It turns out that the computing time needed for a Monto Carlo simulation including
pitch angle and energy scattering is an order of magnitude larger than that needed
for a “monoenergetic” simulation without energy scattering. It would therefore be of
advantage to derive the results for a Maxwellian energy distribution by convoluting the
results of a monoenergetic particle distribution not only for the case without electric
field but also for the case with non-zero radial electric field.

It is found that this procedure indeed gives correct results.

This paper is organized as follows: Section II introduces the relevant notations. In
Sec. III formulas are given for local transport coefficients with electric field. The limit
of vanishing electric field and very long mean free path has to be treated by a non-
local loss rate calculation which is described in Sec. IV. Sec. V gives the convolution
with a Maxwellian energy distribution and the full Monte Carlo simulation. Sec. VI is
concerned with particle and energy fluxes and confinement times. Sec. VII describes
applications to W VII-AS,® Helias49,® TJ-II,1° ATF,!! and Heliotron-E12 configurations.
Sec. VIII presents some conclusions.




II. LOCAL TRANSPORT COEFFICIENTS WITHOUT ELECTRIC FIELD

If the value @, of the ratio of plasma radius a to gyro radius p of the particles
is sufficiently large, a local transport coefficient can be calculated with the help of
Boozer’s Monte Carlo equivalent of the pitch angle scattering operator. The results for
monoenergetic particles can be presented in a normalized way® and are briefly repeated
here for convenience. A normalized mean free path L* is used:

L* = 4/L., L. = 7R, /¢, (1)

where A is the mean free path, L. half the connection length, R, the major torus
radius, and ¢ the rotational transform (or twist) on the magnetic surface considered. A
normalized transport coefficient D* is introduced by

D* = D/Dp, (2)
where Dp is the plateau value
2 2
g v e v
Dp = 0.64 = 0.64 5 3
3 ¢ L, t TR, (3)

v=(2E/ m)ll2 being the particle velocity and g = mv/eB, the formal gyro radius,
where B, is the main magnetic field at R,.

With these normalizations the Pfirsch-Schliiter regime, the tokamak banana regime,
and the ripple regime are given, respectively, by

Dpg =Cps/L*, Dy =CpA®/L*, D} =165Cré2L", (4)

where A = R,/r is the aspect ratio of the magnetic surface considered, and & is the
effective ripple. The coefficients Cpg, Cp, and Cgr are near 1.0 for a (rippled)
tokamak, but may be different for a stellarator.

Fig. 1 gives the results without electric field for an £ = 2 stellararor and a tokamak
with and without ripple, the three cases being chosen in such a way that they have the
same aspect ratio and rotational transform and, as far as the stellarator and rippled
tokamak are concerned, the same effective ripple.




III. LOCAL TRANSPORT COEFFICIENTS WITH ELECTRIC FIELD

Figures 2 and 3 give results for an £ = 2 stellarator for various values of @, and
the electric field F in the case of monoenergetic particles.

F is related to the potential ¢ = ¢o(1—9) by F = +¢,2r/a? (¢, > 0 is repulsive
to positive ions), where r is the formal radius of the magnetic surface with normalized

flux 1.

As has been shown earlier,® the /v regime and the v regime can generally be
represented by

DYy, =C,y, H'Y® VU,
D =L H? ; (5)
2¢E +taQ, E
~ AoeF R, edo’

where E is the kinetic particle energy and v* = 1/L*.

The coefficients C i, and C, are of order 0.1 and 1 respectively.

The domain of validity of Eq. (5) is restricted by two limiting cases. For very weak
electric field (H — oo) the concept of a local transport coefficient is not valid, so that
a critical value H; of H has to be used, H < H.. This value is determined from a
non-local loss rate calculation (see next section). For strong electric field (H — 1), the
transport coefficient does not fall below tokamak banana transport, so that a smooth
transition to this transport regime has to be effected.

Analysis of the computational results shows that close modelling is obtained with
the following formulas:

\/V regime:

1+C12ﬁ ©)
H W5
1+ ()"

C,u=Cn

v regime:

3
14 Chdr
O = Ot el (7)

1+ (&)

at aspect ratio A= R,/r, H. =0.53 ¢+ Q,, and H > 1.

From figures like Figs. 2 to 6 the constants C;; can be derived and are given in
Table I.

Note that the detailed ripple structure enters only relatively weakly through the
coefficients Cy. This is in accordance with the fact that the limiting cases depend only
weakly on the ripple structure.




IV. LOSS RATES WITHOUT ELECTRIC FIELD

Loss rates for monoenergetic particles can be represented as well in a normalized
way>S:

S* = 8/5p, (8)
with the plateau value
v Dp 2.4\2
Sp=s6 L =512 (24Y'p,
P Q% ¢ TR, X a? a i (9)

With this normalization the Pfirsch-Schliiter regime, the tokamak banana regime, and
the ripple regime are given, respectively, by

Sps=1/L*, Sh~A®/L*, S} =1656"L", (10)

which are equivalent to the equations for the transport coefficients [see Eq. (4)].

In the so-called v regime the following relation holds®®:

&= U, (11)

v being the collision frequency.
Figure 7 gives results for an £ = 2 stellarator for various values of @,.
Equation (11) can be divided by Eq. (9) with the result

8} qxH?: (12)

with H, = 0.53 ¢ Q,.




V. LOCAL TRANSPORT COEFFICIENTS AND
MAXWELLIAN DISTRIBUTION

The results obtained for a monoenergetic particle distribution can be convoluted
with a Maxwellian energy distribution:

f(Em)am = = (%)v ith (- %) %, (13)
f(v)dv = iﬁ (%)2 exp (— (%)2> ;1—:, (14)
with

With the mean energy

we can rewrite the Maxwellian distribution:

=252 o (-3 & 8

Here again the transport coefficient and mean free path can be normalized:

D 0% v, m? v3
D}, = —, D, =0.64=2 =0.64———2—, 16
Mk i = ¢mR, e?BXsmR, (16)
* AO
LO - L_ 3 Ao - vo Tgoo (vo) 3 (17)
C
where the collision time 7,0 is given by!®
v3 Z2Z2%e%nyln) v
Togo ('U) Ap = _‘1";, & =54 (18)

~ 4p (8(z) - G(x))’ 27 &2 m? T

and (®(z) —G(z)) is available as a tabulated function'® (for v = v, we get = = 1.225
and & — G = 0.714). Z, m, and v refer to test particles, Z; and n; refer to field
particles, Z and Z; are the charge numbers of the particles.
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The monoenergetic results can be convoluted to obtain the three transport coeffi-
cients which are relevant in the determination of particle and energy fluxes!'4:

SB[ (2 e ((A)E
neVE /B N e
=B @ e ()

(

1)3. (22)

D

Ll

-

with

Figure 8 gives results for a tokamak without ripple in the case of monoenergetic
particles (with pitch angle scattering only) and particles of a Maxwellian particle dis-
tribution (with full energy scattering, mean particle energy equal to that of the mo-
noenergetic particles), the monoenergetic results being convoluted with a Maxwellian
distribution, and — for comparison — theoretical results.!® The theoretical formula was
taken from Ref. 16.

Calculation of transport coefficients of stellarators for a Maxwellian distribution
was done with the formulas for monoenergetic particles: D;l/z = C,y, H% \Ju*,
D} = C, H* v* [Eq. (5)], and with Dy (L*) as upper limit [X = PS, B, R; Eq. (4),
without electric field).

For convolution the formula

1 1
D* * = (
) 3 53 T

-1
* D*) )
ik =y
was used in the ripple regime, and
D*(v*) = min (D, Dly, D})

otherwise (for smaller L*).

The normalized transport coefficients D] can be written as follows:

Dig =5.42D} =8.94CRré6% L}, (23)
o =L1137TD%, =1.137C y, H? \/u%, (24)
Dj, =0.912D} = 0.912C,, H2 1}, (25)
with
1 2 ¢ E taQ,, F muv a

* [ o9 o o
Yy = =7, = Tr oo Sor = ’ A 26
o L{; o Ao eF R, €<}5o’ Qo e B, Qog 5 ( )
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and
3.
1+ Cl?ﬁ g 022‘}1—22
C, Cin ———H—')%, Ooy = O —H-gé—, Hyo =~ 0.53¢Q0,. (27)
1+ (3% 1+ (%)

Figure 9 presents results for an £ = 2 stellarator together with a computation using
a Maxwellian particle distribution with full energy scattering. The overall agreement
between convolution of a monoenergetic particle distribution with energy relaxation
(instead of energy scattering) and a direct computation with full energy scattering is
good. Calculation of these results from a monoenergetic particle distribution is much
faster though.

When only one kind of field particles with density n; is taken into account for the

evaluation of the mean free path, the monoenergetic results of Dr, D v,, and D, can

be given in formulas as follows (y = €2 (mp)l/2 /e®, atomic weight p = m/my, mass of

proton mp):
ek /m 6% B
InA 22212 e® B2 R2 ny
v VB8 (Efe)"
lnAZ2212B§R§ ny’
VinXZ Zyr*: E% /oy
go m" F*% /B, R?
VInXZ zyr% (E/e) \/ny
v b B% /By BZ
ln/\Z2Z1262r2 Enq
&1 \/m F? R
In\Z%2Z}r% (E/e)"ny
v Ve F? RS
The results for a Maxwellian energy distribution can be given as follows:
2 |/ 6 (KT)
In\Z2Z%e® B2 R2n,
v /B 68 (kT /e)"
InAZ2Z2B2R2n,’
VInXZ Zyr* (kT) \/ng
go m F*% \/B, R2
VInXZ Zr*% (kT [e)™ /r1
VA ute F% \/Bg RE
InA Z2Z12 e2r? kT ny
T/ I 2
InAZ%Z2r% (kT /€)% ny
SRR R

8

Dg =10.7 Cy

= 10.7 Cgr

Dul/2 = 0.290 Cul/z

=0.290 C. (29)

D, =0.103 C,

=0.103 C},

(30)

Dir = 239 Cr

=239 Cr

D, =0.548 C,

=0.548 C_y,

(32)

.Dly = 0.115 Coy

= 0.115 Cop




For practical purposes this can be shortened to

Vi 52/2 T47/z
7272 B2 R?n,
ZZy vt T
wh F* /B, R}
Z2Z12 7'2 \/T4 ni
Vi F} 2
with InX =18, &, = 8.854-10712As/Vm, e = 1.602-107°As, m, = 9.108:10 3 kg,

mp = 1.6726-10"2"kg, mp = 3.344-107%"kg, 4 = 3.121-10''s/m3V%, E =3kT, Ty
in 10 keV, Fyin 10kV/m, B, in T, R, and r in m, n; in m™3.

Recently Ho and Kulsrud!” published a paper giving results for transport coeffi-
cients from a basically analytical Fokker-Planck calculation.

Dir = 4.14-10%® Cg [m?s™1], (34)

Dy, = 4151077 C_u, [m?s™], (35)

Dy, = 6.63:10718 ¢, [m?s™1], (36)

For electron ripple transport they find

% 7
D e2(r) 1
IR Ne = 8.15-10%* &_4._

-1 -1
B? B [m™ s (37)

and for ion (deuteron) transport in the y/v regime
P T
F /B, R?

(n2o in 10*°m~3; the quantity 0®/0rm of Ho et al. is not in 10 kV/m but in kV/m,
though the quantity e 0®/drn s in 10 keV/m. TZ/‘ instead of T:/‘ is a typographical
error).

D, y, nq = 3.81-10% [m~1s71 (38)

This is in good agreement with our results for the £ = 2 stellarator (Cr = 1.00,
C.,v, =0.11=Cp, C12 =0, Hoc — oo; see Table I and Table II):

ov

6% (,.) TZ/z

_ 24 Ye -1 -1
Dirne = 9.66-10 B? B2 [m™s™7) (39)
(assuming electron-electron collisions only) and
3/2 T5/4 3/2
D, g = 3.84102 14 120 -1y, (40)

F’ \/B, R?

Ho and Kulsrud have not considered the v regime. Here we get (Gep = 1.1 =Cn,
C22 =0, Hoe — 00)

7'2 \/T4 n2 IR,
Dlu ng = 5.15'1022 W [m 1S 1]. (41)
o




VI. PARTICLE FLUX, ENERGY FLUX AND CONFINEMENT TIMES

Here, we briefly repeat!’!® the set of formulas which lead to “zero dimensional”
estimates of particle and energy confinement times. These estimates are obtained at
half the plasma radius with the simplest specific assumptions on density, temperature,
and potential profiles.

The particle flux I' is:
1on g 8¢ 3819T D, 18T

P pin (b fntgepo @160 Ly 08
1n<n6r+kT6r 2T8r+D1T3r) (42)

and the energy flux

Q= —DznkT<

1on g0 3167 D;10T
nér’ kTér 2T 8r  DyTor)"?

with ¢ = +e for ions and g = —e for electrons.

Assuming parabolic profiles for density, temperature and potential,

(@) (@) eme (- G))

we get for r, =0.5a, n(r,) =0.75n, etc. the particle flux

Din, (Dy 1 qdo 4Din(ro) (Dy 1  qés
= == 1= = -2 (2= 45
=+ a (Dl 2+kT0 3 a Dy 2—}_kTo (45)
and the energy flux
4 a Dy V525 kR 3 a Dy 2 kT,
The area O of the flux surface at r, =0.5a is
O =2n%aR,. (47)
The volume element dV is
dV =472 Ryrdr (48)
and the particle number N within this flux surface is
N:/ndV:I%WZnoazRo. (49) |
The particle confinement time 75 is then
N I 2Bt adls &4
WEFE 16D, (D1 2 T wT, (60)
and the particle loss rate Sy is ‘
1 Dy (D, 1 qbo
W Yt o1 o s : 1
SN ™N a? (Dl 2 g7 k1o (5 )

The energy content W within this flux surface is

10
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W=/nngdV:g}7r2nokToa2Ro. (52)

Thus, the energy confinement time 7y is

4% 1 a2 (D3 1 gq¢o\ !
W =00 " 26D, (Dz 2 kT, (53)
and the energy loss rate Sy is
1 D, (DS 1 q %o
Sw=—=26— (" —--+-=2]. o4
i ™wW 3o\ D 042 - kT, (58)

The ratios of transport coefficients D;, D,, and D3 can be found in Table II.
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VII. APPLICATION TO VARIOUS STELLARATORS

Figures 10 to 15 give results for Maxwellian energy distributions for various con-
figurations: £ = 2 stellarator, W VII-AS, Helias49, TJ-II, ATF and Heliotron-E.

From figures of this type sets of consistent parameters can be derived in the long
mean free path regime. The following definitions have been used: Plateau value
of the transport coefficient D, = 0.640%v, /tm Ry, plateau value of the loss rate
So =5.7D,/a?, plateau value of the confinement time 7, =1 /8S,, ratio of the electric
potential to the mean energy Cy = g¢o/Eo(r5), ¢ = ¢o(1 —r?/a?). Three additional
confinement times are defined as follows:

2 2 2 i

a a a
_ e el e o : 55 |
5.7D;° " 46Dy " ™7 26D, (58) |

71

The particle confinement time is 7n ~ 7o and the energy confinement time is ny =~ 73
as long as the quantity — + g¢o/kT, in Egs. (50) and (53) can be neglected. This
procedure slightly overestimates the electron confinement times and slightly underesti-
mates the ion confinement times in the case of a potential ¢, < 0 which is attractive
for ions and repulsive for electrons.

In the following is Cy4 = £1 arbitraryly, and the confinement times 7, 72, and
73 were taken from those D* values where Dj = Dj, for k =1,2,3. The value of
L{ was chosen accordingly, and thus the values for ne = n; and B = 2u,2nckT/B?
can be derived with T, = T} = T. This procedure is suggested by the condition of
quasineutrality (72 & 79;), which is thus incorporated in a consistent though primitive |
way compatible with the long mean free path regime. | |

W VII-AS®: R, =2m, a =02m, A=20, r, = 0.1m, ¢(r,) = 0.389,
L. =16.2m, B, =3T, kT(r,) =2keV, E, =3keV, v, = 5.36:10° m/s (deuterons),
2 =3.73-1073 m, Qop = 54, B(ro) = 0.5%, ne(ro) = 2.8:10° m~3, A, =1.9-10% m,
Ly =119, D, = 1.95 m?/s, S, = 278 57!, Cy = £1, 7, = 4 ms, 1 = 67 ms,
T2 = 24 ms, 73 = 10 ms.
With protons instead of deuterons, the following values are different: v, = 7.58-:10° m /s,
00 =2.64-1073 m, Qo, =76, D, =1.38 m?/s, S, =197s"!, 7, =5 ms, 7 = 67 ms,
79 = 25 ms, 73 = 10 ms.

Helias49: R, =5m, a =05m, A =20, r, = 025 m, ¢(r,) = 0.746,
L. =211m, B, =4T, kT(r,) = 6.4 keV, E, = 9.6 keV, v, = 9.59-10° m/s
(deuterons), g, = 51073 m, Qo, = 100, f(ro) = 2%, ne(ro) = 6.2:10'° m~3,
4o = 8.910° m, L} =420, D, = 1.31 m?/s, S, =30s7!, Cy = £1, 7, = 33 ms,
71 =0.89s, 79 =0.36s, 73 =0.17 s.

TJ-II' R, =15m, a=02m, A=15 r, =01m, ¢r,) = 1477,
L =319 m, B, =1T, kT(r,) = 0.2 keV, E, = 0.3 keV, v, = 1.70-10° m/s
(deuterons), go = 3.54:107°> m, Qo = 56, B(ro) = 0.1%, ne(r,) = 0.62-10'° m~3,
Ao = 8T m, L =27, D, =0.195 m®/s, S, = 28s7!, Cy = +1, 7, = 36 ms,
71 =27 ms, 75 = 11 ms, 73 = 5 ms.
With protons instead of deuterons, the following values are different: v, = 2.40-10° m/s,
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0o =2.50-107% m, Qo, =80, D, =0.138 m?/s, S, =20s"!, 7, =51 ms, r; = 26 ms,
7o = 11 ms, 73 = 5 ms. :

ATF!: R, =21m, ¢ =03m, A=14, 1, = 0.15 m, +(r,) = 0.425,
Lc=15.5m, B, =2T, kT (r,) =2keV, E, =3keV, v, =5.36:10° m/s (deuterons),
0 = 5.60-1073 m, Qo =54, B(ro) = 2%, ne(ro) = 5.0-10'° m™3, A, = 1.08-10° m,
L =70y ‘Ds15:3184 mz/s, 541 22 24887l Cy = %1, 70 =4 ms, 71 =20 ms, 72 = 8 ms,
T3 = 4 ms.

With protons instead of deuterons, the following values are different: v, = 7.58-10° m/s,
0o =3.96:107° m, Qo =76, D, =2.T1 m?/s, S, =172s1, 7, =6 ms, r = 21 ms,
79 =9 ms, 73 =4 ms.

Heliotron-E'?: R, =2.2m, ¢=02m, A=16.7, r, = 0.132 m, ¢(r,) = 1.032,
Le =67m, B, =2T, kT(r,) = 0.667 keV, E, = 1 keV, v, = 3.10-10° m/s
(deuterons), go = 3.23:1073 m, Q,, = 62, B(ro) = 0.1%, ne(ro) = 0.74-10'° m™3,
4o = 0.81-10° m, L} =121, D, =0.29 m?/s, S, =41s7), Cy = +1, 7, = 24 ms,
71 =0.10s, 79 =40 ms, 73 = 17 ms.
With protons instead of deuterons, the following values are different: v, = 4.38-10% m/s,
0o =2.28:1073 m, Q,, =88, D, =0.205m?/s, S, =29s7!, r,=384ms, r; =0.10s,
79 =39 ms, 73 = 17 ms.
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VIII. CONCLUSIONS

It has been shown that computation of transport coefficients with a Maxwellian
particle distribution and full energy scattering can be replaced by computation of a
monoenergetic particle distribution with pitch angle scattering and energy relaxation
only. Convolution of the monoenergetic results with a Maxwellian distribution gives
essentially the same result as direct computation with full energy scattering.

The results also agree with analytical results for the axisymmetric case (see Fig. 8)
and, in the appropiate limiting cases, with analytical results for the £ = 2 stellarator
(see Fig. 9). The latter results also appear to indicate that a less idealized analytic
calculation for the £ = 2 stellarator would be desirable. As evident from Fig. 9, such a
calculation should incorporate plateau effects and the effect of the electric field on the
electrons.

Zero-dimensional estimates of confinement have also been obtained. They indicate
that neoclassical energy confinement is crucial to stellarators and should certainly be
evaluated in a more complete way than has been done here. In particular, it seems
that the simplified zero-dimensional procedure used here to satisfy the quasineutrality
conditions can be extended to a one-dimensional one which yields n;(r) = ne(r),
Ii(r) = I'.(r), and the associated electric field F(r).
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X. TABLES

TABLE I. Constants Cy; used in Egs. (6), (7), and (27).

Cn Ci2 Ca1 Ca2 C21-Ca2
£ = 2 Stellarator (DOM25) 0.11 1.9 1.1 0.7 0.8
W VII-AS 0.09 1.0 1.0 0.7 0.7
Helias49 0.022 3.0 0.32 1.3 0.42
TJ-II 0.33 0.5 2.8 0.25 0.7
ATF 0.18 0.8 1.9 0.3 0.6
Heliotron-E 0.20 1.0 1.8 0.25 0.45

TABLE II. Ratios of transport coefficients D;, D,;, and D3 used in Sec. VI derived

in this paper and by Ho and Kulsrud.!”

Ripple regime \/V regime v regime
This paper | Ref. 17 |This paper| Ref. 17 |This paper| Ref. 17
o= | 542 1.137 0.912
B 4.86 4.94 2.86 2.84 2.25
o 5.89 5.95 3.83 3.82 3.19
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XI. FIGURE CAPTIONS

FIG. 1.

FIG. 2.

FIG. 3.

FIG. 4.

FIG. 5.

Normalized transport coefficients D* for three conﬁguratlons at A = 10,
t =0.5:

upper curve: - - - £ = 2 stellarator (DOM2A), 6 =8.4%, N = 10,

middle curve: — rippled tokamak with 6, = 8.4%,

lower curve: - - - tokamak without ripple.

The dotted lines represent Dy, Dg, and Dpg

Normalized transport coefficients D* in an £ = 2 stellarator (DOM?25) for
various values of @, and electric fields. A = 12.5, N = 5, ¢ = 0.475,
be ~ 0.03.

%) & (@o=12-10% edo 1l 35 )0-

): Qp=110%, e¢o/E = +1, H =54.8, H, = 252.

V): Qp=110%, edo/E = —1, H =54.8, H, = 252.

O): Q,=1-10% e¢o/E = +2, H =27.4, H. = 252.

O): Q,=110%, edo/E = +5, H =11.0, H, = 252.

(O): Q,=1-10%, e¢o/E = +20, H = 2.74, H. = 252.

The dotted lines represent D"l/2 and D} given by the respective formulas
using the calculated Cjy .

Normalized transport coefficients D* in an £ = 2 stellarator (DOM25) for
various values of @, and electric fields, A = 25, N = 5, ¢ = 0.438,
be =~ 0.01.

(X): Qp =210, edo/E = 0.

(©): Qp=4-10%, e¢o/E = +2.5, H = 80.8, H, = 929.

(0): Qg = 2.103, edofEim 2D ys o H, = 20,2, Ho =464

(@) : Q,=110%, e¢o/E = +£20, H = 2.53, H, = 232.

The dotted lines represent D*I/2 and D] given by the respective formulas
using the calculated Cj .

Normalized transport coefficients D* for the W VII-AS stellarator for various
values of @, and electric fields, A =20, N =5, ¢+=0.389, 6 ~ 0.03.
(X): Qp =2-10% e¢o/E = 0.

(©): Q,=110% edo/E =48, H = 41.6, H. = 2060.

(O): Q, =110 edo/E = £16, H = 20.8, H. = 2060.

(O): Q,=110% ed,/E = +10, H = 3.33, H, = 206.

The dotted lines represent D:I/z and D; given by the respective formulas
using the calculated Cjyj .

Normalized transport coefficients D* for the Helias49 stellarator for various
values of @, and electric fields, A =20, N =4, +=0.746, 6, ~ 0.01.

(™ Qg_2104 edo/E= 0.

(©): Q, = 5103, e¢o/E = +2, H =180, H. = 1977.

(0): Qp=210%, edo/E = +4, H =36.1, H, = 791.

(O) : Qo =1-10%, e¢o/E = +10, H = 7.22, H, = 395.

The dotted lines represent D* i and Dj given by the respective formulas
using the calculated Cjy; .
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FIG. 6. Normalized transport coefficients D* for the TJ-II stellarator for various values
of @, and electric fields, A =15, N =4, ¢=1.477, 6, ~ 0.3.
(X): Qp =2-10% e¢o/E = 0.
(©): Q,=210% e¢o/E =45, H =51.6, H. = 1566.
(O): Q,=110% edo/E = £10, H = 12.9, H. = T83.
(O): Q,="5-10%, epo/E = £20, H = 38.22, H. = 301.
The dotted lines represent D:% and D; given by the respective formulas
using the calculated Cy .

FIG. 7. Loss rates S in an £ = 2 stellarator (DOM25) for
(©): @,'=450;'= B, = 0.88T;
(O) : Q;="200,C-B, = 85T;
(©): @, = 1000, B, = 17.6T.
R,/a=8.6, N=35, +=0.5, 6 =~ 0.02 (at aspect ratio A = 17), R, = 10 m, 1
E =10 keV (deuterons). The dotted line represents S, ~ v. ‘
FIG. 8. Normalized transport coefficients D* for a tokamak with aspect ratio A = 10.
Monoenergetic results () and results using a Maxwellian energy distribution ‘
with full energy scattering (O) are shown. The continuous curve was computed !
by convoluting the monoenergetic results with a Maxwellian energy distribu-
tion. The dashed curve was computed by using the theoretical values of Hazel-
tine et al.151® The dotted line on the left-hand side represents DE'=A%/L.

FIG. 9. Normalized transport coefficients D* for ion and electron particle transport (—)
calculated by convoluting the monoenergetic results with a Maxwellian energy
distribution. Shown are results obtained for an £ = 2 stellarator (DOM25)
at A = 12.5 with e¢o/E;, = 10 and Q,, = a0, = 103 for deuterons and
Qoo = 6:10* for electrons, g, = muv,/eB,.
Further results were obtained by using a Maxwellian energy distribution with
full energy scattering for ions (0) and for electrons (O). |
The dotted lines represent Digr, D, 1,, and Dj,, it being assumed that 1
Ci2 =0 and Cy = 0. The dotted lines are equivalent to the results of Ho
and Kulsrud.!”

FIG.10. Transport coefficients D} (—), Dj (---), and Dj (- --) obtained for the £ = 2
stellarator (DOM25) at A = 12.5 with Q,, = 100 (deuterons), Q,, = 6-103
(electrons), and e¢,/E, = 1. Dotted lines represent D = A”/L* and
Dj. = Cy1 H2v*, which, in turn, corresponds to S, = v.

FIG.11. Transport coefficients D}, D}, and D} obtained for the W VII-AS stellarator
at A = 20. For further information see Fig. 10.

FIG.12. Transport coefficients D}, D}, and Dj obtained for the Helias49 stellarator
at A = 20. For further information see Fig. 10.

FIG.13. Transport coefficients D}, Dj, and D} obtained for the TJ-II stellarator at
A = 15. For further information see Fig. 10.

FIG.14. Transport coefficients D}, Dj, and Dj obtained for the ATF stellarator at
A = 14. For further information see Fig. 10.

FIG.15. Transport coefficients D}, Dj, and D} obtained for Heliotron-E at 4 = 17.
For further information see Fig. 10.
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